关于恒星的这个经典理论 中国天文学家最新研究提出了挑战******
中新网北京1月19日电 (记者 孙自法)广袤宇宙的千亿星系中无时无刻不在诞生着新的恒星,同一恒星形成区会批量形成许多不同质量的新生恒星。长期以来,“恒星初始质量分布规律不变”一直是天文界关于恒星演化研究的一个经典理论。
这一恒星经典理论绝对正确吗?恒星初始质量分布规律真的一成不变吗?中国科学院(中科院)国家天文台刘超研究员领导的合作团队最新研究发现,“恒星初始质量分布规律”会随着恒星金属元素含量和年龄发生显著变化,对其“不变”的经典理论提出挑战。
中国天文学家完成的这项刷新人类认知、将对天体物理多个领域研究产生深远影响的重大科研成果论文,北京时间1月19日凌晨在国际著名学术期刊《自然》发表。论文通讯作者刘超形象科普称,这也就是说,宇宙不同的地方必须用不同的“尺子”丈量,才能得到正确的测量结果。
终结恒星初始质量分布规律是否变化争议
中科院国家天文台介绍说,该台联合北京师范大学天文和天体物理前沿科学研究所、南京大学、中科院紫金山天文台等研究人员,发挥国家重大科技基础设施郭守敬望远镜(大天区面积多目标光纤光谱天文望远镜,LAMOST)光谱数据超大样本优势,并结合欧洲空间局盖亚(Gaia)卫星数据,研究发现天体物理学中一个非常重要的基础概念——“恒星初始质量分布规律”会随着恒星金属元素含量和年龄发生显著变化,从而对“恒星初始质量分布规律不变”的经典理论提出挑战,并刷新了人类对这一基本概念的认知。
研究团队在本次研究中发现,他们首次清晰观测到年轻的小质量恒星数量比例明显高于年老的恒星。此外,金属含量越高的恒星家族中小质量恒星数量比例也越多。这是天文学家首次如此清晰地观测到恒星初始质量分布规律随着恒星金属元素含量和年龄发生了显著变化,直接导致恒星初始质量分布规律在宇宙中普适不变的基本假设不再成立,也终结了一直以来天文界关于恒星初始质量分布规律是否变化的争议。
恒星初始质量函数领域国际权威、德国波恩大学教授帕弗尔·库鲁帕(Pavel Kroupa)评价认为,这项研究基于大样本观测获取的高质量数据,揭示了银河系中恒星初始质量函数与银河系演化历史和环境相关,对于深入理解银河系中不同环境不同时间恒星形成的性质非常重要。
图中横坐标显示恒星星族的金属元素含量(金属丰度),数值越大金属丰度越高。纵坐标显示恒星初始质量函数的形状,α数值越大表示质量较小的恒星比例越高。红色圆点显示年老星族α值比较小,即质量较小恒星的比例低;蓝色三角形显示较年轻恒星随着金属丰度变高,α值也增加,即质量较小恒星的比例增加。中科院国家天文台 供图9万多精细样本直接获取恒星初始质量函数
论文第一作者、中科院国家天文台博士研究生李佳东解释说,恒星初始质量分布规律,天文学上通常称为恒星初始质量函数,它描述了一群恒星在刚刚诞生时,不同质量的恒星所占的比例。在整个天体物理研究中,恒星初始质量函数是现代天文学中一个非常基础的物理概念,对许多关键天体物理学问题的研究起到至关重要的作用。
半个多世纪以来,天文学家通常认为恒星初始质量函数在宇宙各处及各个演化阶段是普适不变的,并作为基本假设在星系形成与演化、星团结构和演化、双星演化,甚至太阳系外行星以及引力波等诸多天体物理研究领域广泛应用,几乎成为天体物理教科书中的“经典假设”。
不过,天文学家近年来通过各种新的观测,发现恒星初始质量函数很有可能不是普适不变的。论文合作者、南京大学天文系教授张智昱指出,一些迹象显示,在恒星形成活跃的环境中大质量恒星的比例更高,这意味着恒星初始质量函数可能不是普适的。
恒星初始质量函数在宇宙各处是否变化成为困扰天文学家的重要问题,需要在银河系中找到更为直接有力的观测证据。近年来,随着郭守敬望远镜、盖亚卫星等中外大型天文设施投入观测运行,并获得海量观测数据,助力中国天文学家发现恒星初始质量函数变化的直接证据。
研究团队发挥郭守敬望远镜大样本光谱数据优势,筛选出迄今最精细的9万多颗太阳邻域的恒星样本,并获取了每颗恒星的金属元素含量和质量。结合盖亚卫星观测数据,他们首次通过俗称“数星星”这一最直观的恒星计数法,对具有不同金属元素含量和年龄的恒星进行统计,从观测角度直接获取了几乎不依赖于任何模型的恒星初始质量函数。
宇宙不同地方需要合适“尺子”正确测量
研究团队认为,无论是测量宇宙不同阶段星系中暗物质和重子物质质量、构建星系化学演化,还是理解恒星形成过程、分析双星演化的物理机制、探测太阳系外行星,甚至包括研究恒星级引力波事件等一系列天体物理学前沿问题的研究,都将因恒星初始质量函数的变化而受到挑战。
刘超以“尺子”作比喻指出:“这如同是一把会随着环境变化的‘尺子’,不能用同一把‘尺子’丈量宇宙的不同地方。在宇宙不同地方,天文学家需要更换合适的‘尺子’,才能得到正确的测量结果。例如,使用银河系目前的‘尺子’就无法测量早期的宇宙”。
论文合作者、中科院紫金山天文台符晓婷副研究员补充说,如此复杂变化的恒星初始质量函数,对恒星形成理论也提出了严峻的挑战。
中科院国家天文台表示,这一原创性成果是中国天文大科学装置郭守敬望远镜在前沿基础研究领域取得的又一项突破性进展。未来,中国将发射中国空间站工程巡天望远镜(CSST),将助力天文学家在银河系更深远区域及近邻星系中进一步验证该重大发现,为更深入理解恒星初始质量函数和恒星形成的物理过程,提供更加丰富的天文观测数据。(完)
聚焦人工智能技术前沿与治理 中外专家学者国际论坛建言献策****** 中新网北京12月5日电 (记者 孙自法)2021人工智能合作与治理国际论坛“人工智能技术前沿与治理”主论坛,12月5日在清华大学以线上线下结合方式举行,中外人工智能(AI)领域专家学者聚焦人工智能技术前沿与治理这一主题,发表主旨演讲建言献策,并深入研讨交流。 美国国家科学院院士、美国艺术与科学院院士、约翰·贝茨·克拉克奖得主、斯坦福大学商学院技术经济学教授、以人为本人工智能研究所副所长苏珊·阿西(Susan Athey)认为,大学在指导人工智能创新方面可以发挥优先引导的关键作用。由于私营部门的技术人员缺乏伦理、哲学方面的训练,难以开发出具有可解释性的算法框架,深化这类研究能够在人工智能治理的问题识别、建立开发实践框架、提供指引等方面发挥重要作用。此外,由于数据可以带来巨大的规模效应,当前“软件即服务”的平台经济模式已非常普及。人工智能和数据需求可能带来“伪”市场集中,因此,未来对“机器换人”的预测非常具有挑战性,需要重新关注和思考人工智能如何用于应对老龄化等公共管理问题,使基于人工智能的公共服务变得更加高效。 国际人工智能协会前主席、清华大学人工智能国际治理研究院学术委员约兰达·吉尔(Yolanda Gil)指出,由于人类对智能机制认知不足、智能行为本身的复杂性、观测手段的有限性以及个体知识、职业、信仰、文化背景等的差异性,导致当前人工智能研究中面临着一系列挑战,因此,需要加强人工智能基础研究工作,这需要跨领域、跨学科的共同努力。当前,理解人工智能机理和构建人工智能世界模型是人工智能研究面临的两大挑战。一方面,理解人工智能机理需要构架“感知-思考-行动”的智能模型,加强对大脑思维机理的理解,建议借鉴神经科学研究联合体的有益经验,建立全球性的人工智能研究数据库,形成全球共享的研究社区。另一方面,构建人工智能世界模型则需要建立在人类经验、社会习俗、专业技能的基础上,建议建立类似于自由协作式的知识库,通过全民民众参与,推动知识在全球层面共享。 中国科学院院士、清华大学人工智能研究院名誉院长、清华大学人工智能国际治理研究院学术委员张钹表示,由于深度学习等算法存在不可解释性,导致前两代人工智能算法存在着公平性、安全性问题和不可靠、不可信等缺陷。发展第三代人工智能关键在于发展可解释的、鲁棒的人工智能理论和方法,开发安全、可信、可靠、可扩展的人工智能技术,以“数据驱动+知识驱动”构建支持可解释的人工智能算法的深度学习平台,赋能人工智能安全与防御优化。从数据中真正获取智能要靠知识的帮助与引导,并需要政策法规对数据使用的正确规范,充分利用知识、数据、算法和算力四个要素结合,推动人工智能的创新发展。 中国工程院院士、北京大学信息科学技术学院院长、鹏城实验室主任、清华大学人工智能国际治理研究院学术委员高文认为,当前人工智能发展处于新一代人工智能向强人工智能发展的关键阶段,至2030年,中国人工智能发展总体要达到世界领先水平。从战略问题看,中美欧三方在人工智能人才、研究、开发、应用、硬件、数据等方面竞争激烈,当前中国人工智能发展在战略政策、数据资源、应用场景、潜力人才方面具有优势,而在基础理论、原创算法、关键部件、国际平台、高级人才等方面还存在短板。从战术问题看,人工智能2.0需采用基于大数据的统计AI解决大规模AI应用需求,鼓励各种可能的强人工智能探索,“可解释机器学习+推理”和“仿生系统+AI大算力”是可能的技术路线图;在安全问题层面,强人工智能的安全风险主要来源于模型的不可解释性、算法和硬件的不可靠性和自主意识的不可控性,人工智能2.0应采用DPI与“防水堡技术”解决数据安全与隐私保护,重视探索人工智能伦理问题,并基于“理论-技术研究-应用”的阶段性采取不同的风险防范策略。 美国国家工程院外籍院士、英国皇家工程院外籍院士、清华大学高等研究院双聘教授沈向洋表示,AI已经应用于生活和工作的方方面面,目前甚至在法律上也具有一定的应用,比如美国已经有很多法庭用机器学习和人工智能方法帮助判刑,包括决定刑期这样非常重要的问题。但是我们还无法理解一些AI决策的缘由。未来发展过程中我们不能只看见AI决策的“黑箱”,应该打开“黑箱”,探究和理解其中的具体内容和因果关系,我们一定要做可解释性的AI。同时,他提到负责任的AI应具备公平性、可靠性、隐私性、包容性、透明性和责任性的特点,作为新兴领域,还需要向其他领域学习,从而更好的服务于人类。 中国工程院外籍院士、清华大学智能产业研究院院长、人工智能国际治理研究院学术委员张亚勤指出,“碳中和”是人类能源结构的又一次变革。“碳中和”既是可持续发展的必然选择,又是产业结构调整和发展的重大机遇。企业在“碳中和”背景下都面临转型增效的压力。人工智能+物联网是智联网,智联网可以赋能绿色计算,助力“碳中和”。智联网助力“碳中和”主要包括三个环节:首先,由数据驱动和人工智能优化引擎来实现智能决策。其次,多参数全链系统配置优化。最后,通过多源多维异构感知融合实现智能感知。智联网可用于能源融合、降低ICT产业的碳排放和推动新兴产业发展等。他还介绍了智联网赋能的绿色计算平台的框架,该平台包括人工智能驱动节能减排和高能效人工智能系统,应用路径包括绿色园区和工业节能。 2021人工智能合作与治理国际论坛由清华大学主办,清华大学人工智能国际治理研究院承办,国际支持机构为联合国开发计划署。论坛为期两天,设有三场主论坛、一场特别论坛和七场专题论坛。“人工智能技术前沿与治理”主论坛由清华大学计算机科学与技术系教授、人工智能研究院常务副院长孙茂松主持。(完) 中国网客户端 国家重点新闻网站,9语种权威发布 |