动物史研究的兴起与发展******
作者:陈怀宇(河南大学特聘教授)
动物史已经在国际学界引起了持续的关注。在2022年8月下旬波兰波兹南市举行的第23届国际历史科学大会上,开幕式安排的主题发言第一场便是“动物史和人类史的交互演进”,强调“动物的主体性”“人类记录中的动物”“动物的展现”“野生和家养动物的管理”四方面的研究。这充分说明了动物史研究的重要性和前沿性。人类的生活离不开动物,人类历史的发展也是和动物共生的历程。当然,从自然史的角度而言,动物的历史要比人类的历史久远得多。
进入人类世之后,人类的活动范围不断扩大,而动物的活动范围不断缩小,特别是启蒙时代以来,人类被视为万物之灵,地位凌驾于自然界的动物之上。人口在二战后爆发式增长,工业化在全球迅猛发展,与之相伴随的是自然生态环境的恶化,地球上的物种急剧减少,下一代能亲眼看见的动物越来越少。这种危机促使学者从将动物看作是客体和资源使用转向思考与动物共存共生。当国际学界出现这样的自觉意识之后,去人类中心主义的动物史作为一门新兴学问应运而生。动物史试图从动物的角度,分析动物如何参与并塑造人类的社会生活,帮助人类重新定义自身。动物史也关注环境和生态危机,因此可以说是环境史的延伸。此外,与传统科技史主要将动物视为人类思考和研究的客体相比,动物史特别增加了关怀动物生存状况的伦理维度,因此为传统科技史增加了人文面相。
近二十年来动物史研究蓬勃发展,但仍然面临很多挑战。首先,动物史作为一门史学新兴领域,在史料的选择和运用方面仍然存在很大局限,因为动物本身并无语言文字,也不能创造出图像材料。人类对动物史的认识,必须仰赖自身创造的史料,包括语言文献、视觉图像、传说和口述资料等。因而历史学者在阐述史料中呈现的所谓动物的声音和动物的能动性时要特别小心谨慎。
其次,目前动物史所探讨的范围,很大程度上局限于与人类关系密切的动物,特别是脊椎动物和哺乳动物。这些动物长期以来被当作人类重要的营养来源,在远古时期参与了人类历史进化,历史上也被用来制作皮毛用品,甚至成为人类精神和文化生活的一部分。人类从动物那里获得灵感,创造文学、艺术,再现动物。与人类关系密切的动物,如牛、马等,留存下来的史料较为丰富,而相当多的未驯化的野生动物,如麋鹿等,古人与其接触不多,留存下来的史料较少。甚至大熊猫这种现在大家广为熟知的动物,直到近代才引起广泛关注,古代的史料相当有限。至于一些海洋动物,如鲸鱼、鲨鱼、海星等,古人也所知甚少,因而留下来的史料不多。这些都给更为全面广阔的动物史研究带来很多困难。
最后,动物史主要由欧美学者倡导,目前动物史研究并没有出现国际性学会和组织,在大学和研究院也没有学系和研究所等学科建制,仅在美国纽约大学等少数学校设立了以动物研究为主修的专门学位,完备性尚待时日。
动物史虽然面临学科建制不成熟的挑战,不过也存在着发展机遇,出现了不少国际项目以及合作计划。动物史研究的论文也经常出现在一些期刊上,比如《社会与动物》等,这些期刊不仅仅限于动物史,大多是广义的动物研究。此外,还有不少出版社出版动物史系列丛书。中文学界也将陆续推出一系列海外动物史重要论著的中译本以及中国学者原创的学术研究作品。显然,未来动物史研究将迎来发展新机遇。
动物史受到去欧洲中心主义、去殖民主义的影响,出现全球史研究的趋势,比如美国历史学家特劳特曼在其著作《大象与国王:环境史》中探讨了大象在埃及、两河流域、印度、中国古代文明发展史上的政治意义,特别是王室用大象进行祭祀、狩猎和展示来构建王权的象征性意义,以及大象在南亚和东南亚历史上所发挥的军事作用,甚至也涉及了大象在近东地区和欧洲作为战争工具的流布。
值得注意的是,研究者近年来尤为关注亚洲的动物史。历史上,来自中亚、南亚和东南亚的各民族通过丝绸之路,将一些动物作为贡品或者贸易物品带到东亚;基于亚洲历史上各国之间的互动和交流,动物外交成为学者关注的重点。此外,欧美探险家、考古学家和收藏家在丝绸之路沿线的考古遗址和古代遗址中发现和收集了许多写本和铭文,这些丰富的文献以多种不同的语言写成,包括于阗语、中古波斯语、蒙古语、粟特语、西夏语、藏语、吐火罗语和突厥回鹘语等。对这些文献中出现的动物进行研究,将帮助我们更全面地了解亚洲的动物文化及其在塑造亚洲历史乃至更广阔的人类历史中所发挥的作用。
关于亚洲动物史研究,除了上述关注重点,近年来欧美学术界还出现了一些重要作品,如耶鲁大学教授米哈伊尔的奥斯曼帝国埃及动物史、荷兰阿姆斯特丹大学教授布姆加德的马来世界猛虎研究等等。在一些学术会议和工作坊,也频频出现有关亚洲动物史的议题。越来越多的研究亚洲地区的学者,无论研究文学、历史还是宗教,都开始重视动物研究,并将动物研究的新方法与文本分析的传统方法结合起来,以揭示动物在传统和近代亚洲经济以及社会文化生活中的地位、功能和角色。
动物史的发展与人类的现实关怀紧密结合在一起。未来的动物史研究应该继续拓展地理范围,从跨国和全球的视角,关注不同族群如何记录动物的活动及其对人类生活的影响,从广度和深度上推进动物史研究进一步发展。
随着科学技术的迅猛发展,从科技角度对人与动物之间的关系进行研究,近些年主要集中在人工智能和脑成像领域。美国动物行为学家斯洛波奇科夫与计算机专家合作,通过一种人与动物之间的翻译器,将动物的声音、脸部表情、肢体动作译成人类能懂的语言,实现人与动物更为密切的情感交流。而另一位美国学者伯恩斯则用脑成像技术试图理解动物的心理活动。这些科技发展,可能会重新定义人与动物之间的关系,同时也会给人类带来许多难以预料的挑战。面对这些关涉人类社会发展的前瞻性议题,动物史的研究将帮助我们更好地认识和思考人与动物的关系,保护生物多样性,为后世的永续发展提供一个健康的环境。
《光明日报》( 2023年01月09日 14版)
2022年,人工智能带给人类更多惊喜******
视觉中国供图
在世界人工智能大会上,用户输入文字,AI就能根据语意进行绘画创作。视觉中国供图
在国内首个乘用车无人化运营试点北京经济技术开发区,一辆“主驾无人、副驾驶配备安全员”的无人驾驶车在行驶中。新华社记者彭子洋摄
即将过去的2022年,对于人工智能来说是值得铭记的一年。大批人工智能相关应用走出实验室,向着大范围落地实践不断迈进。AI“黑科技”加持下的北京冬奥会异彩纷呈;无人驾驶开启多城试点,未来交通更进一步;AI绘画以假乱真令人着迷,艺术创作或许不再是人类专属……
无论是底层技术不断突破,还是各类应用百花齐放,在过去的一年,人工智能向我们展示了它的无限可能。我们相信这只是人工智能的冰山一角,未来它还有更多潜力等待我们去挖掘。
随着技术的不断成熟,落地应用不断创新,人工智能或将真正改变你我的生活。
AI“黑科技”照亮北京冬奥会
助力天气预报、比赛转播和手语播报等
2月4日,全球瞩目的2022年北京冬奥会正式拉开帷幕。人工智能等技术的应用为本届冬奥会增添了别样的“科技之美”。
在此次冬奥会上,由中国科学院院士、北京大学副校长、北京大学重庆大数据研究院首席科学家张平文领衔研制的人工智能MOML算法赋能天气预报模型,使冬奥会天气预报更加精准。人工智能算法在融合、处理信息中的先天优势,使其在一定程度上可以代替预报员在会商中进行信息整合、分析,通过数据挖掘与学习,将预报员的经验内化在算法中,在提高天气预报效率的同时,也进一步提高了预报的准确率。
在本届冬奥会自由式滑雪女子大跳台决赛中,中国选手谷爱凌以“逆天”的精彩表现获得个人首金。在比赛转播过程中,百度智能云通过“3D+AI”技术打造出的“同场竞技”系统,将单人比赛项目变成“多人比赛”,实现冠、亚军比赛画面的三维恢复和虚拟叠加,方便观众看到不同选手的实时动作;同时,通过技术手段对运动员动作进行量化分析,将滑行速度、腾空高度、落地远度、旋转角度等一系列运动数据与原始画面叠加起来,使观众可以更直观地从流畅性、完成度、难度、多样性和美观度等角度看懂选手之间的技术动作差异。
在北京冬奥会开幕的同一天,央视新闻AI手语主播也正式上岗,她在冬奥会新闻播报、赛事直播和现场采访中,为听障人士送上了实时手语翻译服务。凭借精确的手语翻译引擎,该AI手语主播可懂度达85%以上,可将冰雪赛事的文字及音视频内容,快速精准地转化为手语。
腾讯“混元”AI大模型登顶VCR榜单
展现了其在多模态理解领域的强大实力
5月31日,腾讯“混元”AI大模型在多模态理解领域国际权威榜单VCR(Visual Commonsense Reasoning,视觉常识推理)中登顶,两个单项成绩和总成绩均位列第一。这是继在跨模态检索领域大满贯、CLUE自然语言理解分类榜及CLUE总榜登顶后,“混元”AI大模型的又一重大突破,展现了其在多模态理解领域的强大实力。
与跨模态理解任务不同的是,多模态理解任务要求计算机除了能够做到识别层次的感知(如分类检测等),还需要达到认知层次的感知(如判断意图、逻辑推理等)。
此次登顶VCR榜首的“混元”AI大模型由腾讯广告多媒体AI团队自主研发,同时借助腾讯太极机器学习平台的图形处理器算力和训练加速框架,在预训练任务、训练方式上进行了诸多创新改进和设计,有效提升了模型性能。
截至目前,“混元”AI大模型在MSR-VTT、MSVD、CLUE、VCR等多个领域的AI权威榜单中取得了第一名的成绩,并刷新多项行业历史纪录。这意味着,“混元”在自然语言理解、多模态理解、跨模态理解等领域的技术实力已得到验证。
谷歌工程师闹乌龙,称AI存在意识
人工智能所谓的“人格”更多只是模仿人类罢了
谷歌AI工程师闹乌龙,称LaMDA语言模型有意识,引发业界对“AI是否拥有自主意识”的讨论。
今年6月,谷歌公司AI工程师莱莫因认为对话应用语言模型LaMDA具有了“自主意识”,并对此出具了长达21页的证据。莱莫因认为LaMDA具有意识的原因有三:一是LaMDA以前所未有的方式高效、创造性地使用语言;二是它以与人类相似的方式分享感觉;三是它会表达内省和想象——既会担忧未来,也会追忆过去。
LaMDA是谷歌在2021年开发者大会上公布的大型自然语言对话模型,它可以模拟任何带有知识属性的实体,通过“拟人”的方式,在与人类亲切自然的对话中为用户答疑解惑,传递更多知识。
莱莫因的观点和证据引起了业内的广泛关注。不久后,谷歌发表声明称,莱莫因违反了“就业和数据安全政策”,将其解雇。谷歌表示,经过广泛地审查,他们发现莱莫因关于LaMDA是有生命的说法是完全没有根据的。
专家普遍认为,当下人工智能具有的所谓“人格”,更多只是模仿人类的语言风格,有自我意识、有感知能力的AI应该具备能动性,并具有独特的视角看待人和事,但目前AI还只是人们设计的一个计算机系统,作为工具来做一些特定之事。
全球首个图、文、音三模态大模型诞生
“紫东太初”实现“以图生音”和“以音生图”
9月1日,在上海举办的2022世界人工智能大会上,由武汉人工智能研究院、中国科学院自动化研究所和华为技术有限公司联合研发的“紫东太初”多模态大模型项目获得了此次大会的最高奖项。“紫东太初”是全球首个图、文、音三模态大模型,开创性地实现了图像、文本、语音三模态数据间的“统一表示”与“相互生成”,实现了“以图生音”和“以音生图”,理解和生成能力更接近人类,为打造多模态人工智能行业应用提供创新基础,向通用人工智能迈出了重要一步。
“紫东太初”三模态间的相互转换和生成,其核心原理是视觉、文本、语音不同模态通过各自编码器映射到统一语义空间,然后通过多头自注意力机制学习模态之间的语义关联以及特征对齐,形成多模态统一知识表示;之后,再利用编码后的多模态特征,通过解码器分别生成文本、图像和语音。
“紫东太初”凭借四大突破,有效助力以多模态认知为核心的通用人工智能发展。一是首次提出多层次、多任务跨模态自监督学习框架,支持从词条级走向模态级、样本级的三级预训练自监督学习方式;二是首次完成弱关联多模态数据语义统一表示,减少数据收集与清洗代价;三是首次实现多模态理解与生成任务的统一建模,支持跨模态检索、多模态分类、语音识别、图像生成等理解与生成任务;四是首次实现无监督超越有监督方法,基于5%—10%的数据标注,实现100%的有监督学习效果。
AI打破矩阵乘法计算速度纪录
解决了50年来数学领域一个悬而未决的问题
10月,英国《自然》杂志封面以“矩阵游戏”为题,发表了人工智能公司“深度思维”团队的最新发现:AI可以解决矩阵乘法问题。这款名为“AlphaTensor”的AI系统能自行发现新算法,从而解决了50年来数学领域一个悬而未决的问题——找到两个矩阵相乘最快的方法。这是第一个可为矩阵乘法等基本任务发现新颖、高效且正确算法的AI系统。
数学在计算机编程中经常出现,通常作为描述和操纵现实世界现象表示的一种手段。例如,它可用于表示计算机屏幕上的像素、天气状况或人工网络中的节点。在这种情况下,使用数学的主要方式之一,就是对矩阵进行计算。矩阵越大,工作量也越大,计算机科学家开始花费大量时间和精力开发更加有效的算法来完成相关工作。
在此次最新成果中,“深度思维”团队研究人员探究了是否有可能使用基于强化学习的AI系统来创建新算法,从而使计算步骤比现有算法更少。
为了找到答案,他们从游戏系统中寻找灵感。在构建了一些初步系统之后,研究团队将重点转向了树搜索,这是系统在特定情况下查看各种方案的一种方法。
接下来,研究人员将允许系统创建自己的算法,进一步提高效率。他们发现,在许多情况下,系统选择的算法比人类创建的算法更好。“深度思维”团队希望,未来AI能更多地用来帮助攻克数学和科学领域的一些重要的难题。
2022中国人工智能创新发展指数公布
全面反映我国人工智能发展态势
11月18日,第五届世界声博会暨2022科大讯飞全球1024开发者节开幕式上,中国电子信息产业发展研究院(又称赛迪研究院)发布了2022中国人工智能创新发展指数(合肥指数)。
这是国内首个以地区冠名的全国性人工智能专题研究成果,旨在全面系统地反映我国人工智能的发展态势。中国电子信息产业发展研究院从发展环境、创新能力、基础配套、资本投入和产业实力5个维度,构建了中国人工智能创新发展指数,也就是“合肥指数”的评价体系。
近年来,我国人工智能步入与经济深度融合应用新阶段,智能化转型全面推进,人工智能产业在全球的影响力不断增强。2021年,我国人工智能的研发强度为19.4%,从业人数增加到31万人,占全球比重的5.3%。2017年至2021年,我国人工智能产业规模增长了2.6倍,占全球比重提升到16.8%。专利申请量占全球比重持续扩大,从2012年的13%增长到2021年的70.9%。创新能力上,我国人工智能研发投入力度不断加大,从业人数不断增加。
从总体指数来看,北京、广东和上海处于人工智能领域的领跑地位,安徽则紧随其后,排在全国的第6位。合肥已经成为人工智能领域、科技创新与产业发展最活跃的城市之一。
ESMFold预测六亿多种蛋白质结构
预测速度比“阿尔法折叠”快60倍
英国“深度思维”公司8月曾宣布,其开发的人工智能程序“阿尔法折叠”已预测出约100万个物种的超过2亿种蛋白质结构,几乎涵盖了科学界已编录的每一种蛋白质结构。但就在今年11月,元宇宙平台公司(Meta)研究人员利用人工智能模型ESMFold预测了来自细菌、病毒和其他尚未被表征微生物的6亿多种蛋白质结构。
在此次最新研究中,研究团队利用大型语言模型来预测这些蛋白质结构。据悉,语言模型通常需要大量文本进行训练,为将这一模型应用于蛋白质结构预测,研究团队利用已知的蛋白质序列来训练它,这些已知的蛋白质可由20个不同氨基酸组成的链来表达,每个氨基酸由一个字母表示。然后,ESMFold学会了用模糊的氨基酸比例“自动完成”蛋白质结构预测。
该团队负责人亚历山大·里维斯表示,这些训练让ESMFold对包含蛋白质形状信息的蛋白质序列有了直观了解。而且,与“阿尔法折叠”一样,这一模型能将这些了解到的信息与已知蛋白质结构和序列之间的关系信息结合,生成预测结构。
团队指出,ESMFold的预测虽然不像“阿尔法折叠”那么准确,但在预测速度上要快60倍,这意味着它可将结构预测数据库扩展到更大。
首创蛋白质动态结构AI建模方法
对理解生命过程、研发新型药物有着重要意义
12月8日,西湖大学公布了该校人工智能讲席教授李子青团队联合厦门大学、杭州德睿智药科技有限公司首创研发的能够刻画蛋白质构象变化与亲和力预测的AI模型——ProtMD。这是第一个尝试解析蛋白质动态构象的人工智能模型,可辅助药物化学专家更加精准地筛选出高活性小分子,从而加速临床前药物研发。
此前谷歌旗下公司研发的“阿尔法折叠2”能够利用人工智能准确预测蛋白质的三维结构,对结构生物学、药物设计乃至整个科学界都产生了巨大影响。但“阿尔法折叠2”只能预测蛋白质在一个瞬间的静态结构,尚未能解决蛋白质结构动态变化的预测。李子青团队此次开发的AI模型,在给定药物分子和靶点蛋白的情况下,可预测药物分子与生物体内靶点蛋白质结合(柔性对接)后蛋白质结构的变化过程,推断药物与靶标蛋白结合的稳定性,预测药物功能,从而提升AI药物设计的精度和效率。
李子青表示,预测蛋白质结构的动态变化对理解生命过程、研发新型药物都有着十分重要的意义。尤其在AI药物设计中,通过对药物分子与靶点蛋白结合后的动态结构变化进行预测,评估药物—靶点结合亲和力和药物效果,是提高AI药物筛选准确性和效能的重要思路。
多城市推动自动驾驶行业发展
我国自动驾驶行业正式向L3级迈进
2022年是自动驾驶行业具有里程碑意义的一年,有关政策密集出台,相关应用从研发测试走向大规模商业化试点。当前,全国近30个城市已累计为80余家企业发放了超过1000张道路测试牌照,允许高等级智能网联汽车在特定场景、特殊区域内开展规模化载人载物测试示范。越来越多的城市正在推进更高等级的自动驾驶商业化。
今年8月1日,《深圳经济特区智能网联汽车管理条例》开始实行,该条例提出L3级自动驾驶在行政区全域开放道路测试、示范应用,探索开展商业化运营试点,标志着我国自动驾驶行业正式向L3级迈进。
此后,重庆、武汉等地政府部门也先后发布了自动驾驶全无人商业化试点政策,并向百度发放全国首批无人化示范运营资格,允许车内无安全员的自动驾驶车辆在社会道路上开展商业化服务。
此外,为推动智能网联汽车产业健康有序发展,工业和信息化部会同公安部还组织起草了《关于开展智能网联汽车准入和上路通行试点工作的通知(征求意见稿)》,拟遴选符合条件的道路机动车辆生产企业和具备量产条件的搭载自动驾驶功能的智能网联汽车产品,开展准入试点;对通过准入试点的智能网联汽车产品,在试点城市的限定公共道路区域内开展上路通行试点。
AI绘画火了,AIGC元年开启
未来预计能够产生万亿级经济价值
今年8月,在美国科罗拉多州举办的新兴数字艺术家竞赛中,参赛者杰森·艾伦提交的AIGC绘画作品——《太空歌剧院》,获得了此次比赛“数字艺术/数字修饰照片”类别一等奖。没有绘画基础的杰森·艾伦借用了一款名叫Midjourney的AI绘图工具,通过一个类似“文字游戏”的过程,输入题材、光线、场景、角度、氛围等有关画面效果的关键词后,得到了初始作品,并在反复调整和修改后最终完成了这组“太空歌剧院”数字艺术作品。
这一年,AI绘画小程序、网站等开始迅猛增长,而美图秀秀、抖音等软件也加入了AI画图功能。抖音平台数据显示,截至12月6日,已有超2428.4万人使用该特效,迅速飙升至特效潮流榜第一位。AI绘画的百度指数也从日均两三千上升到日均3万,火爆程度可见一斑。
AI绘画的火爆也让AIGC这一概念逐渐进入大众视野。
所谓AIGC(AI Generated Content),即基于人工智能技术自动生成内容的新型生产范式。其技术主要涉及两个方面:自然语言处理(NLP)和AIGC生成算法。其中,自然语言处理是实现人与计算机之间通过自然语言进行交互的手段。
最初,AIGC可生成的内容形式以文字为主,经过2022年指数级的发展,目前AIGC技术可生成的内容形式已经拓展到了包括文字、图像、视频、语音、代码、机器人动作等多种内容形式,2022年也因此被称为“AIGC元年”。生成式AI让机器开始大规模涉足知识类和创造性工作,未来预计能够产生数万亿美元的经济价值。(科技日报实习记者 都芃)